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Identifying Women With Mammographically-
Occult Breast Cancer Leveraging
GAN-Simulated Mammograms

Juhun Lee and Robert M. Nishikawa

Abstract— Our objective is to show the feasibility of using
simulated mammograms to detect mammographically-
occult (MO) cancer in women with dense breasts and
a normal screening mammogram who could be triaged
for additional screening with magnetic resonance imaging
(MRI) or ultrasound. We developed a Conditional Generative
AdversarialNetwork (CGAN) to simulate a mammogram with
normal appearance using the opposite mammogram as the
condition. We used a Convolutional Neural Network (CNN)
trained on Radon Cumulative DistributionTransform (RCDT)
processed mammograms to detect MO cancer. For training
CGAN, we used screening mammograms of 1366 women.
For MO cancer detection, we used screening mammograms
of 333 women (97 MO cancer) with dense breasts. We sim-
ulated the right mammogram for normal controls and the
cancer side for MO cancer cases. We created two RCDT
images, one from a real mammogram pair and another
from a real-simulated mammogram pair. We finetuned a
VGG16 on resultingRCDT images to classify the women with
MO cancer. We compared the classification performance of
the CNN trained on fused RCDT images, CNNFused to that
of trained only on real RCDT images, CNNReal, and to that
of trained only on simulated RCDT images, CNNSimulated.
The test AUC for CNNFused was 0.77 with a 95% confidence
interval (95CI) of [0.71, 0.83], which was statistically better
(p-value < 0.02) than the CNNReal AUC of 0.70 with a 95CI
of [0.64, 0.77] and CNNSimulated AUC of 0.68 with a 95CI of
[0.62, 0.75]. It showed that CGAN simulated mammograms
can help MO cancer detection.

Index Terms— Mammographically-occult cancer, convo-
lutional neural network, conditional generative adversarial
network, radon cumulative distribution transform.

I. INTRODUCTION

MAMMOGRAPHICALLY-OCCULT (MO) cancer is a
breast cancer that is visually occult, or very subtle,

that radiologists failed to recognize. The detection of MO
cancer is typically done by retrospective review, reviewing the
negative prior mammogram using the diagnostic information
(e.g., location) of the index year’s mammogram. The incidence
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rate of MO cancer is high in women with dense breasts,
as dense fibrograndular tissue could hide subtle signs of the
presence of a breast cancer. The goal of our research is to
triage women with dense breasts, who have a high risk of
MO cancer, for additional screenings with magnetic resonance
imaging (MRI) or ultrasounds, which have higher sensitivity
than mammograms.

Our previous studies [1]–[3] showed that bilateral breast
tissue difference is effective for detecting MO cancer.
We showed that a novel image processing technique called
Radon Cumulative Distribution Transform (RCDT) could
amplify a very subtle MO cancer signal by exploiting lateral
breast tissue differences. The RCDT technique for detecting
MO cancer is based on the assumption that the existence
of MO cancer in a mammogram can affect the left-right
tissue symmetry, and therefore, MO cancer can be revealed
by exploring the left-right breast tissue difference.

If we have a system to simulate a personalized mammogram
with a normal appearance, we may be able to obtain additional
information for detecting MO cancer by comparing simulated
and real images. Mammography exams include the standard
four views, left and right Cranial-Caudal (CC) views and
left and right Mediolateral-Oblique (MLO) views. Each view
can be used to detect any abnormal cues that may exist in
the mammogram. In this respect, we may provide additional
views by having simulated mammograms with a normal,
healthy appearance for computerized methods and radiologists.
However, simulating mammograms with a normal, healthy
appearance is a difficult task. Simulating personalized breast
mammograms is even more challenging.

Recently, machine learning and artificial intelligence com-
munities have introduced a Generative Adversarial Net-
work (GAN) to generate realistic fake photographs. A GAN
consists of two convolutional networks, a generator and a
discriminator. The generator tries to create a realistic fake
image, which mimics the images in the database, while the
discriminator tries to classify which one is the real image from
the database, or the fake image from the generator. These two
networks compete with each other during training. In the end,
the generator learns the statistics of the given database and
creates realistic/plausible images that the discriminator cannot
tell if the images are the real or fake.

It is possible to train a GAN to simulate a plausible
mammogram with a healthy, normal appearance. However,
it is difficult to simulate individualized or personalized

1558-254X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on October 10,2022 at 03:51:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7151-0540


226 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 41, NO. 1, JANUARY 2022

mammograms in this original form, as it is an unsupervised
method; therefore, we cannot control the generation process.

A conditional GAN (CGAN) [4] is a type of GAN that
solves image-to-image transition problems. Image-to-image
transition is a type of computer vision task that translates a
given image to another in the target profile, which we can
train from the given paired image dataset. Like other GANs, a
CGAN consists of a generator and a discriminator. However,
both the generator and the discriminator can observe what
the given image is in the CGAN setup. Thus, the generator
can use the information in the given input image to create
the output, which enables a fully supervised setup for training
the GAN. Specifically, the input image for the CGAN can
guide the image simulation process by providing some key
features that the generated image should have. For example,
Isola et al. [4] used shoe sketches as input condition images
to synthesize plausible shoe images. The sketches have key
features, such as size, shape, and style of shoes.

The fact that women have two breasts with similar tissue
profiles can help the CGAN to simulate personalized mammo-
grams. Specifically, we can set one mammogram as the given
or condition image to simulate the opposite side mammogram
by providing key features for simulation, such as breast shape
and density for the simulation. A given breast mammogram
can serve as a sketch of the opposite breast for the CGAN,
like the work of Isola et al. As the simulation is based on
an individual’s own breast, it can be a truly personalized
simulated mammogram, which may help detect a possible MO
cancer.

In this study, thus, we developed a CGAN that simulates the
contralateral mammogram using a single-sided mammogram
(either left or right) as input. We hypothesized that the
simulated breast would exhibit a normal, healthy version of the
contralateral breast, and we can obtain additional information
for possible MO cancer by comparing the simulated and real
breast mammograms.

We then used the RCDT as a primary image process-
ing pipeline to analyze any given two mammograms. Two
mammograms can be any combinations of the following four
mammograms for each view (i.e., CC view or MLO view):
1) left, 2) right, 3) simulated-left, and 4) simulated-right.
After the RCDT highlights suspicious signals for possible MO
cancer, we used a Convolutional Neural Network (CNN) to
analyze the resulting RCDT images to classify the cases with
MO cancer out of the normal controls.

There are only a few previous studies investigating MO
breast cancer among women with dense breasts. Mainprize
and colleagues [5]–[9] focused on the masking effect of
dense or fibro glandular tissue, instead of locating MO cancer
directly. They used a model observer approach (pre-whitening
model observer) to compute the probability of masking of
a fixed size (5 mm) of a Gaussian shaped mass by dense
breast tissue [5]. They estimated a breast density map using a
commercial software (Volpara) on raw mammograms. Then,
using the model observer and resulting density map, they
estimated a detectability (1 – masking probability) map of
a given mammogram. The resulting detectability map showed
low intensity for the area that the human observer likely missed

the lesion, while showing high intensity for the area that was
easy for the human observer to find the lesion. Their recent
work [9] utilized the above detectability map and volumetric
breast density to stratify women with high masking risk who
may benefit from supplemental screening. Specifically, they
tried to find an operating point for deciding who needs to be
sent for supplemental screening. They used 1897 cancer free
women and 44 women with non-screen detected interval breast
cancer. Compared to BI-RADS density and volumetric breast
density alone, their method was able to find 64% of interval
cancers with the least supplemental screenings.

Beyond the field of breast imaging, there exist previ-
ous works similar to our study, in terms of utilizing a
GAN to identify abnormalities in given organs. For example,
Schlegl et al. [10] used a GAN to detect abnormalities in the
retina. They first trained a GAN on multiple patches from
optical coherence tomography images of 270 normal retinas,
to teach the network the distribution of a normal retina. Then,
they used the trained GAN to detect abnormal lesions by
mapping unseen images into a latent space spanned by a vector
of random numbers that steer the image generation. Similarly,
Alex et al. [11] used a GAN to identify lesions in brain
MRI images. They also trained a GAN on multiple patches
of non-lesion brain areas of 8 patients, to make it learn the
underlying distribution of non-lesion brain areas. Then, they
used a discriminator score of less than 0.5 as an indicator of
brain lesions to detect. The most apparent difference between
these previous works to our proposed study is on how we
identified abnormal cases. While the previous studies used
GANs as a main pipeline to detect abnormalities, we used
a previously successful setup, RCDT, to detect MO cancer.
As original GANs were not created for abnormality detection,
they may not work as well as deep learning algorithms meant
for detection.

We propose that left-right dense tissue differences are a key
strategy to locate suspicious signals in mammograms that may
indicate MO cancer [1]–[3]. We used the RCDT as the main
image processing pipeline to amplify subtle left-right breast
tissue differences that may pinpoint MO cancer. Specifically,
by treating the left as a template and the right as a target,
or vice versa, we can apply the RCDT to find what portion of
the template should be changed or moved to make it look like
the target. Thus, one may consider the RCDT as a projection
algorithm, which projects a target in terms of a template. This
projection provides the amplification of suspicious signals that
may not be visible in a single breast mammogram. Using the
RCDT to amplify the differences between left and right breast
tissue is a key difference from the work of Mainprize et al.
and success for pinpointing the location of MO cancer.

The current study is expanding our previous attempts [1]–[3]
to detect MO cancer by adding simulated mammograms as
supplemental information. As previously mentioned, one may
treat the RCDT as a projection algorithm and having simulated
mammograms can create another projection domain that may
lead to improving MO cancer detection.

This paper is organized as follows. First, we developed a
CGAN that can simulate a plausible mammogram of a given
woman in section II. Then, we processed and combined the
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TABLE I
CHARACTERISTICS OF MAMMOGRAM DATASET FOR CGAN

diagnostic information for detecting MO cancer from real and
simulated mammograms by using the RCDT and deep CNN
techniques in section III. We then evaluated the trained CNN
to show the effectiveness of having CGAN generated mammo-
grams for detecting MO cancer in section IV. We conducted
post-hoc analysis on how a simulated mammogram could help
detect MO cancer, compared to the other study, and discussed
the limitations and areas of further improvements in section V.

II. METHODS FOR SIMULATING MAMMOGRAMS

A. Dataset

Under an approved institutional review board (IRB) proto-
col, we used a dataset that included screening full field digital
mammograms (FFDMs) of 1366 women with normal/healthy
breasts (BI-RADS category 1) and no prior breast surgeries
from the University of Pittsburgh Medical Center (UPMC),
to develop the CGAN for simulating the opposite side of the
breast mammogram. The Selenia Dimension system (Hologic
Inc., MA, USA) was used for all mammogram exams. All
exams were acquired in 2018 and consisted of four standard
views; left and right CC views and left and right MLO views.
Each woman in this dataset had a screening mammogram at
a single time point. Table I summarizes the characteristics of
the mammogram dataset used for this study. BI-RADS breast
density is based on the radiologist report.

B. Preprocessing for Simulating Mammograms

We first converted the original 16-bit mammograms to
8-bit gray scale images. Using an existing algorithm [12]
developed for breast density segmentation, we first segmented
the breast area, dense tissue, and background automatically
(Fig 1. b and e). We used only the breast area and removed
any unnecessary portion (e.g., view-tag and non-breast tissue).
After that, we resized each segmented image to the size
of 1024 by 1024 pixels (Fig. 1. c and f). CGAN requires
two images, i.e., input and target, for training. We used
left mammograms as the input and their corresponding right
mammograms as the target. Fig. 1 illustrates the above pre-
processing steps.

Fig. 1. This figure illustrates the preprocessing process for simulating
mammograms. (a) and (d) are mammography images of the same
women (Right CC and Left MLO view, respectively). (b) and (e) show
the output images of the segmentation algorithm. The algorithm returns
the segmentations of the breast area (green), dense tissue (blue), and
background (red). (c) and (f) show the resulting images after locating
the breast area, removing the non-breast area, segmenting the breast
area with a tight rectangular window, and resizing it to have 1024 by
1024 pixels. We flipped left view mammograms (e.g., (f)) vertically so that
all images have the same orientation. Note, we kept the pectoral muscle
area, as it is required to generate plausible MLO view mammograms.

C. Conditional Generative Adversarial Network (CGAN)

We adopted the original CGAN setup, called pix2pix,
by Isola et al. [4] for this study. The CGAN is trained to
translate the given input image x and random noise vector z to
the target image y, which can be formulated as G: {x, z} → y,
where G indicates the generator. Generator G is trained to
fool discriminator D by creating realistic fake images, while
discriminator D is trained to detect the images by the generator
as fake.

The objective function of CGAN can be formulated as

Objective = arg min
G

max
D

LcG AN (G, D) + λL L1 (G), (1)

where LcG AN (G, D) and L L1(G) are the loss function for
CGAN and L1 regularization term, and written as

LcG AN (G, D) = Ex,y
[
log D (x, y)

]
+ Ex,z

[
log (1 − D (x, G (x, z)))

]
, (2)

L L1 (G) = Ex,y,z
[‖y − G (x, z)‖1

]
, (3)

By having a normal mammogram of a woman as input
image x and the opposite mammogram of the same woman
as target y, the above objective function set the generator G
to create a plausible normal mammogram that is similar to y.
In other words, given a normal mammogram of a woman,
the generator G creates a normal opposite-side mammogram
of the same women. Fig. 2 illustrates how we adopted the
original CGAN to simulate plausible mammograms.

The generator in the CGAN uses U-net architecture as the
skip connection between the encoder and the decoder can
help to explore the similar characteristics that the input and
the target images may have. This is also the right choice for
our objective, as left-right breast mammograms should share
common features (e.g., breast shape and density).
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Fig. 2. This figure illustrates how we setup Generator (G) and Dis-
criminator (D) for simulating plausible and normal mammograms. From
N-dimensional noise vector and given condition normal mammogram of
one woman, G and D are optimized adversarially to generate plausible
and normal opposite sides of a mammogram of the same woman.
Specifically, G takes real condition mammograms and noise vector to
generate simulated mammograms, and D takes either real condition and
target mammogram pairs or real condition and simulated mammogram
pairs as input.

The original CGAN built to create 256 by 256 pixel images.
It is too low in terms of resolution as the typical resolution
of mammograms is 2k by 3k. Thus, we increased the depth
of the generator by two levels (each depth doubles the output
size) to create high resolution images of 1024 by 1024 pixels.
One can use higher resolution, such as 2048 by 2028 pixels.
However, to balance the simulation quality and computation
burden, we used 1024 by 1024 pixels.

We directly adopted the discriminator from the CGAN,
which is called patchGAN, where it focuses on the fidelity
of N by N-pixel patches, instead of evaluating the entire
image. PatchGAN consists of four convolutional layers with
64, 128, 256, and 512 filters followed by 1D convolution
and sigmoid function. As a result, the receptive fields of the
discriminator D, i.e., patchGAN, was 70 by 70, where it only
penalizes structure at the scale of 70 by 70-pixel patches.

D. Training Details

We used the Adam optimizer [13] with a learning rate of
0.0002, and momentum parameters of β1 = 0.5, β2 = 0.999.
In addition, we set the maximum epoch as 200 and the weight
for L1 regularization, λ, as 100, and the minibatch size of 1.
We used random left-right vertical flip as data augmentation.
We used a single Nvidia Titan X GPU with 12Gb memory
for training. The training of the CGAN took approximately
48 hours.

We developed two CGANs, one for the CC-view and
another for the MLO-view, as they look different (pectoral
muscle is only visible in MLO view). In our previous
study [14], we evaluated the performance of the CGAN for
creating feasible contralateral mammograms by comparing the
similarity between the simulated-real mammogram pairs (SR)
to that of the real left-right mammogram pairs (RR). We used
the mean squared error (MSE) and 2D correlation as surrogate

Fig. 3. This figure shows the simulated contralateral CC-view (first
row, middle) and contralateral MLO-view (second row, middle) for an
example normal woman, which was not used for training of the CGAN.
The Generator in the trained CGAN is supposed to create a plausible
normal breast mammogram of a woman using her mammogram as an
input and a condition.

measures for the similarity between two mammograms (either
SR or RR mammogram pairs). We showed that the similarity
of SR pairs is higher than that of RR pairs.

Figure 3 shows simulation outcomes for example CC and
MLO view mammograms of one woman that was not used for
training the CGAN.

III. METHODS FOR DETECTING

MAMMOGRAPHICALLY-OCCULT BREAST CANCER

A. Dataset

Under an approved institutional review board (IRB) pro-
tocol, we used the screening FFDMs of 333 women
with dense-breast tissue rated as BI-RADS breast density
(4th edition) level 3 or level 4. All mammograms were acquired
before 2014 using either Lorad Selenia or Selenia Dimension
systems (Hologic Inc., MA, USA). Among the 333 women,
236 were normal with two consecutive negative screening
FFDMs, and 97 had unilateral MO cancer. We used all four
standard views, left and right CC views and left and right
MLO views. Note that we used the most recent negative prior
mammograms for both MO cancer cases and normal controls
and therefore all 333 mammograms used for this study were
normal (BI-RADS classification level 1). Thus, all cancer
cases in this study showed no obvious visible signs of an
abnormality in the mammogram. Table II shows the summary
characteristics of the dataset used for this study.

B. Simulating Mammograms Using Trained CGAN

Similar to the previous section, we first segmented the breast
area using the same algorithm [12], and cropped the segmented
breast area using a tight rectangular box. The algorithm
removed any soft tissue other than breast like Fig 1. Then,
we resized each segmented image to the size of 1024 by
1024 pixels for CGAN.
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TABLE II
CHARACTERISTICS OF MAMMOGRAM DATASET

FOR MO CANCER DETECTION

For normal controls, we used the left mammograms as
the input for the trained CGAN to simulate plausible normal
versions of their corresponding right mammograms. For MO
cancer cases, we used the normal side as the input to generate
plausible normal versions of the contralateral breast mam-
mograms, where the original target mammograms have MO
cancer in it.

Note that we have two trained CGANs, one for the CC
view and another for the MLO view. Using these CGANs,
we simulated contralateral CC-view and MLO-view mammo-
grams with the characteristics of normal, healthy breasts.

After the simulation, we had the following set of mammo-
grams for each sample in the dataset as described in the list
below:

Normal controls: 1) Left, 2) right, and 3) simulated right
MLO, and 4) Left, 5) right, and 6) simulated right CC.

MO cancer cases: 1) Normal, 2) MO cancer side, and
3) simulated normal version of MO cancer side MLO, and
4) Normal, 5) MO cancer side, and 6) simulated normal
version of MO cancer side CC.

C. Radon Cumulative Distribution Transform (RCDT)

RCDT is a non-linear and invertible image transform that
can represent a given image I in terms of a given template
image I0 [15]. Let 2D Radon transform on the image I and
the template I0 be Î = R (I ) and Î0 = R (I0), respectively.
Then, the RCDT(I |I0) = Ī is given as,

Ī (·, θ) = ( f (·, θ) − id)

√
Î0 (·, θ), (4)

and its inverse transform given as,

I = R−1
(

det (J (g))
(

Î0 ◦ g
))

,

where g (t, θ) =
[

f −1 (t, θ)
θ

]
, (5)

where J (.) is Jacobian and id refers to identify function i.e.,
r (x) = x, t and θ refer to the displacement and angle in the

Fig. 4. This figure illustrates how we computed the RCDT image (c)
from the template mammogram (b) to the target mammogram (a). (d)
represents the resulting RCDT image in image space by taking the
inverse Radon transformation. Compared to the direct left-right difference
image (e), the RCDT image (d) highlights the left-right breast dense
tissue difference shown in the dotted circle in (a) and (b), which failed to
do so in the direct difference (e).

sinogram. In addition, f (.,θ ) warps Î (·, θ) to Î0 (·, θ), where
it satisfies∫ f (t,θ)

−∞
Î (u, θ)du =

∫ t

−∞
Î0 (u, θ) du, for all θ ∈ [0, π] ,

(6)

By using the RCDT, we can represent how the intensities
of image I and their locations differ from I0 in terms of each
angle θ and displacement t from the origin in image space.

Figure 4 illustrates how we computed the RCDT image (c)
from the template (b) to the target (a), what the resulting
RCDT image represents in image space (d), and how it is
different from the direct left-right difference image (e).

Note that RCDT(I |I0) is in Radon space and therefore, it is
difficult to present the visual cues that led to MO cancer
detection. Thus, we transformed back RCDT(I |I0) into the
image domain by applying the inverse Radon transform.

Equation (4) can be divided into two parts, the first part with
function f and the second part with the template in radon
space. The first part highlights where the major differences
exist between the template and target images. By multiplying
this highlighting part on the template image, one can pinpoint
the area of the template that is most different from the target.

For optimal use of the RCDT for developing an algorithm
to detect MO cancer, one needs to take the MO cancer side as
the template, while the opposite side as the target. By doing
so, we may pinpoint the potential area of MO cancer in the
mammogram that has the actual MO cancer in it. For this
reason, for MO cancer cases, we selected the mammogram
with the MO cancer side as the template and others as the
target.

In our previous study, we showed the effectiveness of RCDT
processed mammograms over raw mammograms by showing
CNN trained on RCDT processed mammograms statistically
performed better than that on raw mammograms [3].

D. Preprocessing for MO Cancer Detection

We resized all mammograms to have 800 by 500 pixels
using bicubic interpolation. After that, we matched the ori-
entation of the right and left mammograms by horizontally
flipping the right-side mammograms.
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Fig. 5. This figure illustrates how we preprocessed mammograms for
MO cancer detection. From normal side mammograms (a) of women
with MO cancer, we generated a normal version (c) of the mammogram
with the MO cancer (b) using the trained CGAN. The yellow arrow in
(b) indicates the location of the MO cancer. We can then create two RCDT
images, one (d) from (a)–(b) mammogram pair and another (f) from
(b)–(c) mammogram pair. The RCDT images shown in this figure were
contrast enhanced version. Then, we fused two RCDT images (e) to
develop algorithms for MO cancer detection.

There was a total of 6 mammograms per case, and therefore
we can compute a total of 4 RCDT images, two from the
CC-view, another two from the MLO-view. For normal con-
trols, we set the left mammogram as the template, while we set
the real right mammogram and simulated the left mammogram
as the target, resulting in two RCDT images for each view.
Likewise, for MO cancer cases, we can get two RCDT images
for each view by setting the MO cancer side as the template
and the real non-MO-cancer side and simulated MO cancer
side as the target. After that, we enhanced the contrast of
the resulting RCDT images by applying the contrast limited
adaptive histogram equalization (CLAHE).

We then fused two RCDT images for each view by using
the imfuse function, MATLAB (Mathworks, MA). The Imfuse
function combines two images by assigning gray to the
pixels with similar intensities, while setting different colors
(e.g., magenta, green) for pixels with different intensities. This
fusing method can provide additional information for detecting
MO cancer, as they further highlight which area of the two
RCDT images are different to each other. Fig. 5 summarizes
how we processed and combined real and simulated mammo-
grams for training CNNs.

After that we resized the resulting 800 by 500 RCDT
images to 400 by 250 for training CNNs. The reasons behind
this choice are: 1) faster prototyping, 2) memory restriction,
and 3) making it to have the similar input size of typical CNNs
pretrained on ImageNet [16]. The size of 400 by 250 pixels

Fig. 6. (a) shows the CNN architecture that we used for analyzing multi-
view RCDT processed mammograms. We used two CNNs, one for the
CC-view and another for the MLO-view, as they show different imaging
features. We then used a high-level fusion approach to combine the
information analyzed by each view-specific CNN to compute the case
probability of the MO cancer. (b) illustrates the VGG16 architecture that
we used for this study. The last few layers for ImageNet classification was
removed before inserted into the architecture shown in (a).

is larger than the input size of VGG16 [17] and ResNet [18]
with the input size at 224 by 224, allowing room for data
augmentation (e.g., random cropping, translation, etc).

E. CNN Architecture for MO Cancer Detection

Figure 6.(a) shows the diagram of the CNN architecture
that we used for this study. As CC and MLO views have
different orientations and tissue presentations, we used two
view-specific branch CNNs to analyze each view indepen-
dently and then combined the processed information by each
view-specific CNN at a high-level by using a concatenation
layer, followed by a fully connected layer with two output
and softmax layers to compute the case probability of the
MO cancer.

The number of controls and MO cases are limited, there-
fore, we decided to utilize transfer-learning. We used CNNs
pretrained on ImageNet and adopted, adjusted and fine-tuned
those to solve our problem of interest.

The choice of CNNs in the proposed pipeline in Fig. 6
can be diverse. One can use AlexNet [19], VGGNet [17],
ResNet [18], DenseNet [20], and etc. Among those, we used
VGG16, as their architecture is simple and showed compatible
performance to state of art designs, like ResNet. We removed
the last few layers of the pretrained VGG16, i.e., fully con-
nected, softmax, and output layers, which were customed for
classifying 1000 ImageNet categories. Fig 6. (b) shows the
VGG16 network architecture after removing the last few layers
that was used in the architecture shown in Fig 6. (a).

F. Training Details

We divided our dataset into training, validation, and testing
with a ratio of 7:1:2. Then, we used 5-fold cross-validation by
assigning mutually exclusive 5 different portions of the entire
dataset as the testing set in each cross-validation fold.

We implemented data augmentation including a horizontal
and vertical random flip, random rotation with [−20◦, 20◦],
random scale in the x-axis and the y-axis within the range of
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[0.5, 2], random translation within the range of [−20, 20]
pixels and [−100, 100] pixels for the x-axis and the
y-axis, respectively, and random cropping with the 224 by
224 window.

We used the NVIDIA Titan X graphic card with a memory
of 12GB to fine-tune the above network. We set the learning
rate for the weight and bias of the newly added layers to
10 times higher than the original layers to expedite the learning
process for those new layers. That is, we set newly added
layers in Fig. 6 (a). with a learning rate of 10, while setting
the learning rate of layers in Fig. 6 (b) as 1. We used the
Adam optimizer [13] and the cross-entropy loss to optimize
the network. The training options included [max epoch: 128,
mini-batch size: 16, learning rate: 0.00001, learning rate drop
factor: 0.5, learning rate drop period: 10, validation patience: 5,
random shuffling at each epoch]. We stopped the training early
if there was no improvement in classifying MO cancer cases
from controls.

G. Evaluation

The purpose of this study was to show the improvement
of MO cancer detection leveraging CGAN generated mam-
mograms. Thus, we compared the CNN trained on RCDT
images fused from real and simulated mammograms over that
trained only on real mammograms. That is, we used the same
CNN architecture shown in Fig. 6, but using different input
images, one for CGAN leveraged RCDT images, another for
RCDT images based only on real mammogram pairs, and
another for RCDT images based only on real and simulated
mammogram pairs. CGAN leveraged RCDT images will be
(e) in Fig. 5, RCDT images based only on real mammogram
pairs and real+simulated mammogram pairs will be (d) and
(f) in Fig. 5, respectively.

The input size of VGG16 is 224 by 224 pixels and it
cannot cover the RCDT image of 400 by 250 pixels. Thus,
for evaluation, we used the sliding window approach with a
window size of 224 by 224. We used the stride sizes of 5 and
35 for the x-axis and the y-axis, respectively. This yielded a
total of 36 sliding window images (6 each for each axis) per
case. To estimate the score for a case, we used the median
value of the scores of the 36 sliding window images.

Then, we conducted ROC analysis and used the Area under
the ROC curve (AUC) as our figure of merit.

Within the same cross-validation fold, we trained three
composite CNNs, one using CGAN leveraged RCDT images
or real and simulated fused, which we call CNNFused, another
using RCDT images from real mammogram pairs, or CNNReal,
and another using RCDT images from real and simulated
mammogram pairs, or CNNSimulated, until they achieved appro-
priate validation performance (i.e., plateaued validation AUC),
and then tested on the held-out test set.

Although we utilized the transfer learning technique, to be
exact, fine-tuning of the ImageNet trained CNN for the given
task, it is possible that having all weights updated every
training iteration may not help to avoid local minima and over-
fitting. In addition, our model has more weights to be trained,
as there are two branch CNNs, one for the CC-view and

Fig. 7. Effect of freezing difference levels of layer blocks shown in
Fig. 6 (b). The AUC values clearly show that freezing up to Conv5 yielded
the best AUC.

another for the MLO-view, where each has millions of weights
to be trained. This could be another risk factor for over-fitting.
In fact, previous studies showed the merit of freezing lower
level features for fine-tuning [21], [22]. Thus, we analyzed
the effect of freezing layers. Starting from no freezing on
all layers, we froze various levels of layers block from the
first convolution block, Conv1, to the last fully connected
layer, fc2, as shown in Fig. 6 (b). We kept the same freezing
scheme for two branch CNNs, i.e., if we froze up to Conv5 for
the CC-view CNN branch, then we did the same for the
MLO-view CNN branch.

IV. RESULTS

For most cases, the training was completed when there was
no improvement in the validation AUC, which was around
90 epochs. Then, we tested the trained CNN on the held-out
test sets under 5-fold cross-validation. After that, we pooled
the scores of the test sets of all 5-fold cross-validations and
computed the ROC curve and the associated AUC value.

As the different levels of frozen layers could affect the
classification performance, we first evaluated the effect of
different levels of layer freezing. Fig. 7 shows the pooled
AUC (both validation and testing) for different levels of layer
freezing. Note that the lower validation AUC was coming from
the smaller number of cases (10% validation vs. 20% testing).

We found that freezing up to Conv5 yielded the best testing
AUC. The case with no freezing (leftmost) resulted in the
worst AUC. There is a clear trend, i.e., increasing in AUC
from no freezing (leftmost) to freezing up to Conv5, and
then the AUC value starts decreasing when we further freeze
fully connected layers. The fact that no freezing yielded the
lowest AUC supports our rationale for freezing layers; that
is, the number of weights to be trained in the composite
CNN in Fig. 6 (a) is high and therefore, it is necessary
to keep the relevant information of the CNN pretrained on
ImageNet. As freezing layers up to Conv5 resulted in the
best classification performance, we applied the same freezing
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Fig. 8. This figure shows the ROC curves of three CNNs trained on
fused CGAN leveraged RCDT images (solid line), RCDT images of real
mammograms (dashed line), RCDT images of simulated mammograms
(solid line with + marker). The CGAN leveraged CNN showed an AUC
of 0.77, which was statistically better than that of other two CNNs.

procedures for the other two composite CNNs (CNNReal and
CNNSimulated) for comparison.

We repeated the pooled AUC approach as the above for
the CNNReal and CNNSimulated. Then, we used Delong’s
method [23] to compare the classification performances of
CNNFused, CNNReal, and CNNSimulated. Specifically, we com-
pared the AUC of CNNFused, 1) to that of CNNReal and 2) to
that of CNNSimulated.

Figure 8 shows the ROC curves of the three composite
CNNs. CNNFused showed an AUC of 0.77 with a 95% confi-
dence interval (95% CI) of [0.71, 0.83], while that of CNNReal
was 0.70 with a 95% CI of [0.64, 0.77] and CNNSimulated
was 0.68 with a 95% CI of [0.62, 0.75]. The performance
of CNNSimulated was compatible to that of CNNReal. How-
ever, the performance of CNNFused was statistically better
(p-values < 0.02) than those of the CNNReal and CNNSimulated.
Specifically, the differences in AUC of CNNFused – CNNReal
and CNNFused – CNNSimulated were 0.067 with a 95% CI of
[0.011, 0.12] and 0.089 with a 95% CI of [0.032, 0.15]. The
box plots of scores, as shown in Fig 9, for all CNNs confirms
the above finding. From CNNSimulated to CNNFused, the score
values for MO cancer cases increased. In addition, the class
separation by CNNFused was improved compared to those of
CNNReal and CNNSimulated.

These empirical results showed that we can get additional
diagnostic information from simulated mammograms, when it
was combined with the real mammograms.

V. DISCUSSION

In this study, we showed that the composite CNN trained on
real and simulated fused RCDT images, CNNFused, performed

Fig. 9. This figure shows the box plots of MO cancer cases and normal
controls for three composite CNNs on the pooled 5 independent held out
test sets of 5-fold cross-validation. CNN using real and simulated fused
showed the best class separation compared to those of the other two
CNNs. In addition, the absolute scores for MO cancer were increased
from simulated to real, and to fused cases. These results show that
real and simulated RCDT images represent different visual cues for MO
cancer such that they were a complement to each other for classifying
MO cancer from normal controls. Each end point of box plots represents
25 and 75 percentiles of data. Central mark and notch are median and
its 95% confidence intervals. + indicates outliers.

better than that of the CNN trained only on real RCDT
images, CNNReal, as well as the case of the CNN trained
on simulated RCDT images, CNNSimulated. This proves our
hypothesis, that is CGAN simulated mammograms can help
MO cancer detection, empirically.

We further analyzed the effectiveness of having CGAN
simulated mammograms for MO cancer detection. For this
post-hoc analysis, we focused on two points: 1) whether
simulated images degrade the cases that real images got correct
and 2) how simulated images helped the cases that real images
misclassified. To do so, we set 0.2 as the threshold to find
the misclassified cases by the CNNReal. We computed the
threshold by taking the mid-point of two median scores, one
from the MO cancer (0.28) and another from normal controls
(0.12) for the CNNReal (second subfigure in Fig 9).

By setting a 0.2 score as the threshold, the CNNReal cor-
rectly classified 222 cases (63 MO cancers) and misclassified
the remaining 111 cases (34 MO cancers). Fig. 10 (a) shows
the box plots of all three CNNs for the samples that CNNReal
got 100% correct. Although the overall CNNSimulated was
lower than that of CNNReal, CNNFused was able to combine
the information (real and simulated) to maintain the separation
between the two samples. Fig. 10 (b) shows the box plots
of all three CNNs for those of the 111 misclassified cases
by the CNNReal. The CNNSimulated was able to give better
estimated scores for both MO cancer cases (i.e., higher scores
than CNNReal) and normal controls (i.e., lower scores than
CNNReal). By combining the information from the real and
simulated RCDT images, the CNNFused was able to give the
better score (i.e., higher score than CNNSimulated) for MO
cancer cases, while it was not able to do so for normal
controls. These results show that simulated mammograms
did not degrade CNNFused, instead, simulated mammograms
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Fig. 10. This figure shows the box plots of MO cancer cases and
normal controls for three composite CNNs, but for the cases that CNNReal
was 100% correct (a) (N = 222, 63 MO cancers, 159 Normals) and
misclassified (b) (N = 111, 34 MO cancers, 77 Normals). For (a),
the scores of CNNSimulated for MO cancers are lower than that of
CNNReal but it maintained the separation between MO cancer cases and
controls. However, by combining the information from real mammograms
and simulated mammograms, the scores for CNNFused were higher than
that of CNNReal for MO cancer cases, which made its separation between
MO cancers and normal controls higher than that of CNNSimulated.
For (b), as shown in the box plots in the middle, CNNSimulated were able
to estimate better scores for both MO cancer and control groups, which
resulted in better estimation for CNNFused for MO cancer cases.

improved its performance by adding different views that real
mammograms could not provide.

In addition to the post-hoc analysis on misclassified cases
by the CNNReal, we compared where and how each CNN
focused on RCDT processed mammogram images. For this
analysis, we applied Grad-CAM [24] on an example MO
cancer case from misclassified cases by the CNNReal. Grad-
CAM highlights the area that leads to the CNN’s decision.
Specifically, it back propagates the estimated scores to the
last convolutional block, in our case the maxpool in Conv5 in
Fig. 6 (b). By combining each channel’s activation with
back propagated weights, we can obtain the gradient 4 class-
activation map, i.e., grad-CAM for given images.

Figure 11 shows the input RCDT processed MLO-view
mammograms for CNNs and their corresponding grad-CAM
results. The yellow arrow indicates the MO cancer. For this

Fig. 11. This figure shows an example how a simulated mammogram
can help the correct MO cancer classification. (a – c) are the normal
side, the cancer side, and the simulated normal version of the cancer
side of the MLO mammogram of a woman with MO cancer. Yellow arrow
indicates the location of the MO cancer. (d and e) are RCDT images
from the template (b) to the real target (a) and the simulated target
(c), respectively. (f) is the fused RCDT images (d + e). (g), (h), and
(i) are class-activation maps for (d), (e), and (f). The estimated scores
for CNNReal, CNNSimulated, and CNNFused were 0.11, 0.22, and 0.63,
respectively. MO cancer is visible, but subtle in RCDT images, and
therefore CNNReal and CNNSimulated missed the area with MO cancer as
shown in (g) and (h). However, the area with MO cancer in two RCDTs
are different, which resulted in a discordant area in the fused RCDT
image. This led the CNNFused to extend its focused area to the real
target, as indicated by dotted red ellipsoid (i).

example, the MO cancer was not visible in the CC view images
and therefore omitted. The scores for CNNReal, CNNSimulated,
and CNNFused for the given example were 0.11, 0.22, and 0.63,
respectively. The class-activation maps for CNNReal (Fig 11. g)
and CNNSimulated (Fig 11. h) clearly show that the network
missed the area with MO cancer, while that of the CNNFused
extended to the area with the MO cancer, which lead to a
better estimation score for the MO cancer. This example shows
the strength of combining the information from the real and
simulated mammograms. The MO cancer (Fig 11. b) is visible,
but very subtle even in the RCDT images from both the real
and simulated mammograms (Fig 11. d and f). By combining
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these two RCDT images (Fig 11. d and e), we get an area of
discordant between two RCDT images highlighted in magenta
color in Fig 11. f (red dotted ellipsoid). This discordant area
led the CNNFused to extend its focused area to the real target,
as indicated by the dotted red ellipsoid (Fig 11. i).

We found the effectiveness of freezing layers for MO
cancer analysis. Freezing up to the last convolutional blocks in
Fig. 6 (b). led to the best classification performance for analyz-
ing RCDT images for MO cancer detection. Samala et al. [21]
investigated the effect of freezing different levels of layer
blocks for classifying malignant and benign breast lesions in
Digital Breast Tomosynthesis (DBT). They used the AlexNet
as a basis network and fine-tuned it on mammography images
and then fine-tuned again on DBT images. Among various
levels of freezing levels, they found that freezing up to the
first convolutional layer blocks achieved the best classification
performance, while not-freezing at all resulted in the worst
classification performance. Their finding on the best way
of freezing layers is different from ours, as we found the
freezing up to the last convolutional layer block achieved
the best classification performance on MO detection. The
possible reasons for this difference could be: 1) the choice
of the basis network, i.e., AlexNet vs. VGG16, 2) the imaging
task, i.e., classifying benign-malignant lesions vs. MO cancer-
normal controls, 3) the network complexity, i.e., single stream
CNN vs. composite CNN with two branch CNNs, and 4) the
use of different image processing techniques, i.e., patch-based
vs. RCDT processed from mammogram pairs. Further research
would be required to investigate the reason for the different
findings.

However, it should be noted that our finding on no freez-
ing layers confirm that of Samala et al, which proves the
importance of freezing layers for transfer learning. It has
been a common problem for the field of medical imaging
that having a limited number of available samples for training
CNNs. Although there has been persistent effort on sharing
imaging datasets in medicine (e.g., TCIA [25]), the majority
of medical images is still private and not commonly shared
with others. Therefore, transfer learning will still be one of
the major applications for various medical image analysis
tasks in the foreseeable future. Our finding (along with that of
Samala et al.) suggests that research utilizing transfer learning
should consider freezing layers to achieve the optimal target
performance.

We observed artifacts in our CGAN simulated mammo-
grams, specifically, checkerboard artifacts and artifacts at the
nipple area (Fig 12). We performed post-hoc analysis to
check if those artifacts affect the performance of CNNSimulated.
We randomly sampled 50 normal controls (approx. 22%) of
the MO cancer detection dataset and found 11 cases with
checkerboard artifacts and 7 with nipple artifacts. The mean
and standard deviations of the CNNSimulated scores of the
11 normal cases with checkerboard artifacts were 0.236 ±
0.227 with [min, max] = [0.017, 0.761]. In the case of
the nipple artifacts, the mean and standard deviations of the
CNNSimulated scores were 0.069 ± 0.069 with [min, max] =
[0.003, 0.213]. For most cases with checkerboard artifacts, the
scores from CNNSimulated were lower than 0.2 (7 out of 11).

Fig. 12. This figure shows two examples with simulation artifacts,
the first (top row) with the typical GAN-generated checkerboard artifact
and another (bottom row) with a nipple artifact (simulated nipple as
dense tissue). From the randomly sampled MO cancer dataset (N = 50),
we found 11 checkerboard and 7 nipple artifacts.

For four cases with scores above 0.2, two cases were naturally
difficult cases (CNNReal scores > 0.5). For the other two cases,
CNNFused was able to lower the final scores using information
from CNNReal (scores < 0.1). For the cases with nipple
artifacts, the scores were close to or lower than 0.2, showing
the negligible effect of such artifacts on the performance of
CNNSimulated. These results indicate that CNNSimulated was
able to learn the artifacts and remove them for MO cancer
detection for most cases. For the few cases with CNNFused >
0.2, the scores from CNNReal corrected the false information
from the artifacts.

There exist a few weaknesses of this study. We used
a limited number of cases to train CGAN for simulating
breast mammograms. The number of samples for training
CGAN, i.e., 1366 women, is certainly not enough to cover
all variations that mammograms could have. As one can see
from Table I, there was also a limited number of women with
extremely dense breasts. As our ultimate purpose is to find
the women with dense breasts who have MO cancer, having
more dense breasts (especially for extremely dense ones) is
important. Having an insufficient number of dense breasts
for training CGAN might have resulted in a negative impact
on the performance of CNNFused for MO cancer detection.
However, even with such a limitation, we were able to show
the effectiveness of using CGAN simulated mammograms for
MO cancer detection. We expect that more data, especially
more extremely dense breasts, for training CGAN will lead to
better simulated mammograms, which will ultimately result in
better performance for MO cancer detection.

Another weakness of this study is on the characteristics
of the mammogram datasets. This is a single center and
single vendor study. Our institute uses the Hologic system for
breast cancer screening. As different vendors utilize different
hardware and software configurations, e.g., image processing,
detector, and x-ray spectra, breast tissue might appear different
with different vendors. In addition, patient characteristics
of one institute can be different from another. For these
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reasons, our method may not work on mammograms from
other vendors and institutes. One may use fine-tuning to
adapt the network on mammograms for other vendors and
institutes. As future work, we will evaluate the performance
of our method on mammograms from multi-vendors and
multi-institutes and investigate fine-tuning for improving our
method further.

In addition, we focused on identifying women with unilat-
eral MO cancer only, which we believe is the first step and
foundation for finding women with bilateral MO cancer. To do
so, we simplified the inclusion of our dataset to have only
women with unilateral MO cancer, which is the majority of
women with breast cancer. We assumed that mammograms
used as the condition image for the CGAN are normal, and
those used as the template image for the RCDT are the MO
cancer side, which can be otherwise in real clinical settings.
For example, the CGAN synthesized image for the MO cancer
side can exhibit artifacts, as it hasn’t seen the cancer cases
before. Moreover, RCDT may not be able to highlight the
area with MO cancer if MO cancer is not present in the
template image. These could degrade the performance of
our proposed method. One way to solve this problem is to
include additional mammograms to the pipeline. Specifically,
we can create additional synthesize mammograms by taking
each side (left or right) as condition images. Likewise, we can
create additional RCDT processed mammograms by using
each side (left or right) as template images. Then, we can add
additional branch networks to the network, shown in Fig 6. (a),
to accommodate newly generated images. We believe that such
a modification can handle the cases with bilateral MO cancer.
As future work, we plan to investigate the setup explained
above.

There are some areas for improvement in this study. The
first is on the choice of processing RCDT images. We used
the magenta – green fusion to highlight the possible differ-
ence between two RCDT images. However, there are other
ways to fuse given two RCDT images, which may improve
MO detection performance further. One of the other fusing
options would be assigning each RCDT image to different
color channels, e.g., red and green. As we are using transfer
learning, where CNNs pretrained on ImageNet use color
images with three channels, by assigning RCDT images to
each color channel, we may utilize the remaining channel
for providing an additional image, e.g., original mammogram,
which can further improve the CNNReal’s performance on MO
cancer detection. In addition, we can explore the patch-based
approach (using patches of RCDT images with MO cancer
and those of normal) to train CNNs, which can improve the
MO cancer detection performance. Thus, we will investigate
the optimal way of combining the diagnostic information from
real mammogram pairs and real-simulated mammogram pairs
as a future study.

The second area for improvement is on the choice of the
basis CNN architecture for MO cancer detection. To build
on our previous research [2], [3], we used VGG16. How-
ever, it is well-known that residual based networks, e.g.,
ResNet, typically perform better than the VGG16 network
for various classification tasks. Nevertheless, the purpose of

this study was to show the effectiveness of the additional
diagnostic information provided by using CGAN generated
mammograms, not developing the best working model. Future
research, therefore, will include to find the best working basis
network for MO cancer detection.

The third area for improvement is on how we combined
two branch networks for estimating case-based probability of
having MO cancer. We used the high-level fusion, i.e., having
two networks to analyze the information in the CC and MLO
views separately. We used the single fully-connected layer
to process the concatenated information from two branch
networks before the final classification (Fig 6. a). One can use
multiple fully-connected layer blocks, like VGG16, to give
more non-linearity before the final classification. It is also
possible that the early fusion technique, sharing weights and
gradients at the early level of layers, may help to locate the
MO cancer. As there are many ways to combine information
from each view, further research is necessary to find out which
one is the best for MO cancer detection.

The fourth area of improvement is on improving the qual-
ity of the CGAN simulated mammogram. We found that
the standalone performance of CNNSimulated was lower than
CNNReal, which could be improved by incorporating new or
advanced techniques available for CGAN. For example, one
can use interpolation-convolution for upsampling in Generator,
instead of standard 2D transposed convolution, to remove
checkerboard artifacts [26]. We will investigate new techniques
that could improve our CGAN setup for synthesizing mam-
mograms as a future study.

The last area of improvement is on investigating the possible
extension of the proposed study for digital breast tomosynthe-
sis (DBT). Many imaging centers in the US transitioned to
mammography screening with DBT, as it provides increased
cancer detection and fewer false positive findings [27]. Our
proposed framework, that is utilizing CGAN, RCDT, and
CNN for identifying MO cancer cases, can be extended.
DBT, once reconstructed, is stacked 2D slice images of the
breast. Thus, we may use our framework directly on slices
of DBT volumes. Specifically, we can develop CGAN for
simulating slices of DBT and then apply 2D RCDT and 2D
CNN on real and simulated DBT slices. In addition, we can
develop a CGAN that can simulate the entire 3D DBT volume
by expanding the dimension of all components (e.g., layer
dimension) of CGAN by 1. There also exists 3D RCDT (avail-
able at https://github.com/rohdelab/PyTransKit) and 3D CNNs
(e.g., [28]), which allow our proposed technique/pipeline to
be extended to identify MO cancer in DBT volumes. We will
investigate the 3D version of our proposed framework on DBT
images as a future study.

In summary and conclusion, we developed CGAN to
generate a plausible mammogram with normal appearance
using the opposite mammogram as a condition image, and
empirically showed that CGAN generated mammograms can
help detect MO cancer among women with dense breasts.
Identified women can be triaged for additional screening with
MRI, or ultrasound, which can result in earlier detection of
MO cancer. Further research would require improving the
quality of the generated mammograms, to find the optimal
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way to combine the generated mammograms with the real
mammograms for MO cancer detection.
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